
 1

A Reliable Service–Oriented Architecture
for NASA’s Mars Exploration Rover Mission

Ronald Mak
University Affiliated Research Center (UARC)

University of California at Santa Cruz
NASA Ames Research Center

Mail Stop 269–3
Moffett Field, CA 94035

650–604–0727
rmak@mail.arc.nasa.gov

Joan Walton
NASA Ames Research Center

Mail Stop 269–3
Moffett Field, CA 94035

650–604–2005
jdwalton@mail.arc.nasa.gov

Leslie Keely
NASA Ames Research Center

Mail Stop 269–3
Moffett Field, CA 94035

650–604–0570
leslie@ptolemy.arc.nasa.gov

Dennis Heher
SAIC

NASA Ames Research Center
Mail Stop 269–3

Moffett Field, CA 94035
650–604–4514

heher@ptolemy.arc.nasa.gov

Louise Chan
SAIC

NASA Ames Research Center
Mail Stop 269–3

Moffett Field, CA 94035
650–604–3377

lchan@mail.arc.nasa.gov

Abstract—The Collaborative Information Portal (CIP)
was enterprise software developed jointly by the NASA
Ames Research Center and the Jet Propulsion Laboratory
(JPL) for NASA’s highly successful Mars Exploration
Rover (MER) mission. Both MER and CIP have
performed far beyond their original expectations.1, 2

Mission managers and engineers ran CIP inside the
mission control room at JPL, and the scientists ran CIP
in their laboratories, homes, and offices. All the users
connected securely over the Internet. Since the mission
ran on Mars time, CIP displayed the current time in
various Mars and Earth time zones, and it presented
staffing and event schedules with Martian time scales.
Users could send and receive broadcast messages, and
they could view and download data and image files
generated by the rovers’ instruments.

CIP had a three–tiered, service–oriented architecture
(SOA) based on industry standards, including J2EE and
web services, and it integrated commercial off–the–shelf
software. A user’s interactions with the graphical
interface of the CIP client application generated web
services requests to the CIP middleware. The middleware
accessed the back–end data repositories if necessary and
returned results for these requests. The client application
could make multiple service requests for a single user
action and then present a composition of the results. This
happened transparently, and many users did not even
realize that they were connecting to a server. CIP

1
 0-7803-8155-6/04/$17.00© 2005 IEEE

2
 IEEEAC paper #1075, Version 1, Updated September 13, 2004

performed well and was extremely reliable; it attained
better than 99% uptime during the course of the mission.

In this paper, we present overviews of the MER mission
and of CIP. We show how CIP helped to fulfill some of
the mission needs and how people used it. We discuss the
criteria for choosing its architecture, and we describe
how the developers made the software so reliable. CIP’s
reliability did not come about by chance, but was the
result of several key design decisions. We conclude with
some of the important lessons we learned from
developing, deploying, and supporting the software.

TABLE OF CONTENTS

1. MISSION OVERVIEW ... 1
2. THE COLLABORATIVE INFORMATION PORTAL 4
3. A SERVICE–ORIENTED ARCHITECTURE 5
4. RELIABILITY... 11
5. LESSONS LEARNED ... 12
6. CONCLUSION .. 12
ACKNOWLEDGEMENTS ... 13
REFERENCES .. 13
BIOGRAPHIES ... 14

1. MISSION OVERVIEW

The two rovers of the Mars Exploration Rover (MER)
mission, Spirit and Opportunity, arrived at Mars in
January 2004 after seven–month journeys from Earth.
NASA scientists designed these twin robotic geologists to
search for evidence of liquid water in the past on the

 2

Martian surface. The rovers landed on opposite sides of the
planet: Spirit inside Gusev Crater on January 3, and
Opportunity on Meridiani Planum on January 24. Mission
control was at NASA’s Jet Propulsion Laboratory (JPL) in
Pasadena, CA.

Each rover carried an impressive array of cameras and
scientific instruments. See Figure 1. The cameras included

a panoramic camera (pancam), a navigation camera
(navcam), and front and rear hazard–avoidance cameras
(hazcams). The scientific instruments deployed on a
movable arm included the Miniature Thermal Emission
Spectrometer (mini–TES) that identified minerals, the
Mössbauer Spectrometer that identified iron–bearing
minerals, the Alpha Particle X–Ray Spectrometer (APXS)
that determined the composition of rocks, the Microscopic
Imager that looked at fine–scale features, and the Rock
Abrasion Tool (RAT) that ground away the outer surfaces
of rocks to expose their interiors for examination. [1]

NASA designed the rovers for nominal 90–sol missions. A
“sol” is a Martian day, which is nearly 40 minutes longer
than an Earth day. Other than a few software and
mechanical problems that the engineers were able to
overcome, the rovers performed better and far longer than
initial expectations and entered into extended missions. By
early September 2004, each rover had operated over 200
sols and had explored more territory than originally
planned.

The science generated by the rovers was even more
impressive than their longevity. NASA’s international
Deep Space Network (DSN) antennas received the data and
images sent by the rovers, which JPL then processed and
stored in its data servers. After analyzing these data and
images, NASA scientists concluded that liquid water did

Figure 1 – Mars Exploration Rover
(Photo courtesy of NASA and JPL.)

Figure 2 – The CIP Client Application

 3

indeed exist on the surface of Mars in the distant past. [2,
3, 4, 5]

However, the MER mission was more than just the rovers.
Two Earth–bound teams of NASA scientists, engineers,
and mission managers, one team per rover, worked around
the Mars clock to direct the rovers and analyze their results.

Tasks for Each Sol

Simply stated in order, each rover team’s tasks for each sol
were:

(1) Receive a downlink of data and images from the rover.
(2) Process and analyze these results.
(3) Plan the next sol’s activities.

(4) Construct the rover command sequence.
(5) Send an uplink of the command sequence to the rover.

Mission Management

To coordinate all these activities on the ground, time
management, data management, and personnel
management were important.

Time management—During the initial nominal 90–sol
mission and partway into the extended missions, mission
personnel worked on Mars time. Therefore, meetings and
other mission events scheduled on Mars time would drift
nearly 40 minutes later relative to each Earth day. There
were two Mars time zones, one per rover, and there were

Figure 3 – Multiple Ways to Navigate the Data and Image Files

Figure 4 – Data Viewers

(Images courtesy of NASA and JPL.)

By Unix directories By data products

 4

several important Earth time zones.

Knowing “What time is it now?” and “When is my next
meeting?” was critical for many members of the rover
teams.

Data management—During each sol, there was a handoff of
data and images between the engineers of a rover team and
its scientists. The engineers commanded the rover and then
received and processed the results. The scientists analyzed
the results and worked with the engineers to plan the next
sol’s activities for the rover. They had to correlate what
they had planned for the rover and what actually happened.

JPL kept the processed data and images in data servers
managed as a Unix file system. This repository contained
both structured and unstructured heterogeneous data, and
the scientists used specialized and general analysis tools.
Some of the data had security restrictions that prevented
access by foreign nationals.

Personnel management—The mission personnel on the two
rover teams worked under various roles. Different roles had
different information needs, which management needed to
communicate. Some individuals varied their roles during
different times of a sol, and others moved from rover team
to another, perhaps assuming different roles for each rover.

Staff management was complex during the mission. Not
only did each person need to know what he or she was
supposed to be doing, but also with whom. It was necessary
to know who else was working, where, and when.

2. THE COLLABORATIVE INFORMATION PORTAL

The NASA Ames Research Center and JPL jointly
developed the Collaborative Information Portal (CIP) for
the MER mission. Its crosscutting features and
functionality served the mission managers and the mission
scientists and engineers. Many found it to be useful during
each sol throughout the mission. It assisted the rover teams
with their daily tasks, and it helped provide time, data,
schedules, and messages.

The Client Application

Figure 2 is a screen shot of the CIP client application,
which ran under Microsoft Windows, MacOS X, Sun
Solaris, and the Linux operating systems on PCs, laptops,
workstations, and 50–inch touch–screen displays. The
client application consolidated several useful tools into a
single consistent and intuitive user interface.

Schedule Viewer—CIP assisted with time and personnel
management by displaying staff and event schedules.
People could use the Schedule Viewer Tool to see when
events occurred, who was working when and where, and
what roles they needed to fill that day. The schedules
helped them adjust to Mars time, since regularly scheduled
events drifted later from day to day relative to Earth time.

Event Horizon––Users could place scheduled events into
the Event Horizon Tool. This tool then displayed a running
countdown of the time left until the start of the event. The
displayed events changed color to indicate nearness of the
start times.

Data Navigation—CIP’s Data Navigator Tools assisted
with data management. NASA scientists and engineers

Figure 5 – New Files

Duration Icons

Files

 5

could use the tools to access and display the data and
images files residing in the JPL data servers. CIP
transported this information securely over the Internet
through the JPL mission firewalls.

CIP users had two ways to navigate the data and image
files. They could go directly to the files via hierarchical
Unix directories. Or, they could browse the files as “data
products”, which were organized hierarchically by the
rover, sol, and instrument or camera that generated the
original raw data. See Figure 3.

CIP’s data repository tier generated metadata for the
downloaded data and images stored in the mission data
servers. Based on this metadata, the Data Navigator tools
automatically classified and organize the data and images
into the data product hierarchy. The tools used this
classification to determine which viewer to use to display a
file. See Figure 4. Users could also search for files based on
the metadata fields.

Clocks—During the mission, it was not always sufficient to
say something like, “It will happen at 14:30.” Was that
Mars time or Earth time, and in which time zone? The
Clock Tool displayed clocks that showed Mars and Earth
times in multiple time zones chosen by the user.

Time Conversion––The Time Converter Tool enabled users
to convert times between various Earth and Mars time
zones.

Broadcast Announcements—The Broadcast
Announcements Tool enabled mission personnel to send
messages to other CIP users. Typical messages were new
data product announcements. Users could browse archived
messages.

New Files––Users who were interested in specific data
products could use the New Files Tool to register their
interest in those products. See Figure 5. Each user could set
the duration, and various icons represented his or her
interests. The file information list displayed the products
that became available during the selected duration.
Whenever a new product became available in the mission
data servers, the product’s file information automatically
appeared in the list.

3. A SERVICE–ORIENTED ARCHITECTURE

CIP was a three–tiered enterprise system. CIP users ran
copies of the client application that used the Internet to
access shared data. On the server side, software known as
“middleware” handled simultaneous data requests from the
client applications, and it securely accessed the “backend”
data repositories, which included the mission data servers
and the CIP Oracle databases containing metadata,
schedules, and the message archive. [6] See Figure 6.

Given the mission requirements and the nature of the CIP
client application, we designed CIP to have a service–

Figure 6 – A Three–Tiered Enterprise System with a Service–Oriented Architecture

 6

oriented architecture (SOA). An SOA consists of a loosely
coupled collection of services, where each service is a well–
defined, self–contained function that is independent of
other services. The services communicate with each other
and with the client applications through a set of protocols
known as web services. [7]

Why SOA

Users ran copies of the CIP client application to obtain
information such as times and schedules and to access data
and images. The client application satisfied the user by
making requests to the CIP middleware for service, such as
“Tell me what time it is on Mars in Spirit’s time zone” or
“Download the image file with this file path.”

Web services––Using web services for communication
between the client applications and the middleware offered
several key advantages.

Web services communicate using a textual XML–based
industry–standard protocol known as SOAP3. Service
requests and responses are actually small XML documents
passed between the client and server. CIP transmitted these
documents securely using HTTPS.

Web services do not require persistent connections. A client
connects to the middleware server, makes a request,
receives the response, and disconnects. The CIP
middleware kept track of an individual user’s requests
during a session with an access token. A client application
received a unique token from the middleware whenever a
user logged in, and the client passed this token back to the
middleware as part of each subsequent request.

3
 SOAP originally stood for Simple Object Access Protocol. Now the

acronym supposedly doesn’t stand for anything, although some claim it ought
to stand for Service–Oriented Architecture Protocol.

Web services are language independent, and the web
services standard defines a finite set of XML–based data
types. [8] Therefore, any programming language that has
library routines to communicate via SOAP and to convert
between native data types and the XML data types can use
web services. We wrote the CIP client application in Java,
and during the mission, the CIP middleware (also written
in Java) responded to requests from the CIP client
application and from Java and C++ applications developed
by other projects.

Industry standards––The web services standard was but one
example of our following industry standards to develop
CIP. We had limited time and resources4, and not the
luxury to re–invent the wheel. Following industry standards
allowed us to use commercial off–the–shelf (COTS)
software wherever possible.

The Client Tier

We designed the CIP application to be a “thick client”
desktop application, as opposed to a “thin client”
application that ran within a web browser. A thick client
makes better use of the user’s local computer and provides
better interactivity and responsiveness. We implemented
the client application using the widely available Java
platform and graphical user interface components from its
Java Foundation Classes (“Swing”).

Figure 7 shows our component–based approach for the
client tier. Each client tool was a CIP Component object,
and a Service Manager object supported one or more CIP
Component objects. Each Service Manager object managed
the connections to a particular remote middleware service

4
 For example, the initial version of the middleware had to be ready in four

months to be available for an Operational Readiness Test at JPL. Three
software engineers completed the middleware in a year and a half. There were
twelve CIP developers overall, and the entire project lasted about three years.

Figure 7 – The Component–Based Client Application Architecture with Web Services

 7

by using a Web Services Client Stub. For example, the
clock components used the Time Service Manager object,
which managed the connections to the middleware’s time
service. The Web Services Client Stubs did the conversions
between the clients’ native data types and the XML data
types.

Since it used web services, the client application connected
to the middleware whenever a user action triggered a
service request, and then promptly disconnected as soon as
it got the response. The client automatically polled the
middleware periodically via service requests for the current
time and for any new broadcast messages.

The Middleware Tier

The CIP middleware communicated using web services
with all the actively running copies of the CIP client
application. It consisted of a Java-based commercial off-

the-shelf application server and the Java components that
we developed. We based our components on the Java 2
Enterprise Edition (J2EE) industry standard. [9] These
components (“beans”) were Enterprise JavaBeans (EJB)
that operated at run time under the control of the WebLogic
application server from BEA Systems, Inc. [10]

Middleware Services––The services provided by the CIP
middleware to the client applications were:

o User management service to process user logins and
logouts and to maintain user sessions.

o Time service to provide Mars and Earth times in various
time zones.

o Metadata query service to fetch metadata from the CIP
database.

o Schedule query service to fetch schedules from the CIP
database.

Figure 9 – Data Beans in the Memory Cache

Figure 8 – Web Services and Service Provider Beans in the Middleware

 8

o File streamer service to download and upload files.
o Message service for asynchronous notifications, to

broadcast and receive messages, and to fetch archived
messages from the CIP database.

The middleware also provided basic security and a number
of “ilities”, including:5

o Accessibility
o Scalability
o Extensibility
o Reliability
o Adjustability
o Adaptability
o Maintainability

CIP security was a combination of user management and
data encryption. The CIP middleware required each user to
log in with a user name and password. Each user had pre-
assigned privileges that allowed or disallowed access to
certain data or images. Digital certificates from Verisign,
Inc. enabled the CIP middleware to encrypt all data traffic
between it and the client applications. [11]

A stateless session EJB represented each middleware
service. Each such Service Provider bean had public
methods and a SOAP Processor to enable the client
applications to request services by invoking the methods
remotely via web services. The SOAP Processor did the
conversions between the Java data types and the XML data
types. See Figure 8.

The application server maintained an instance pool of the
stateless session beans, and it created or destroyed these
instances in response to the request load. This made CIP
scalable: as more requests arrived from the users, the
application server automatically replicated more Service
Providers to handle them.

Several of the middleware services created data beans,
which were stateful session EJBs. These beans maintained
state information, and the application server cached them
in memory. For example, the metadata and schedule query
services created data beans that used Java Database

5
 Also known as Motherhood and Apple Pie.

Figure 10 – The Middleware Utility

2004-04-01 12:09:32,225 INFO : jdoe: Metadata.query()
2004-04-01 12:09:32,230 DEBUG: SELECT file_view.* FROM MER_B.file_view WHERE
((file_view.modified >= 1080806949117) AND (file_view.category = 'dataFile') AND
(file_view.filename LIKE '/%/merb/ops/ops/surface%/%/rcam/%' ESCAPE '\'))
2004-04-01 12:09:33,126 DEBUG: Records fetched: 0, skipped: 0
2004-04-01 13:50:06,816 INFO : mjane: Metadata.query()
2004-04-01 13:50:06,820 DEBUG: SELECT file_view.* FROM MER_B.file_view WHERE
((file_view.seqnum = 66) AND (file_view.category = 'dataProduct') AND
(file_view.owner = 'opgs') AND (file_view.type LIKE '%/jpeg/MER-B' ESCAPE '\'))
2004-04-01 13:50:10,073 DEBUG: Records fetched: 1, skipped: 0
2004-04-01 13:50:11,546 INFO : jdoe: Metadata.getObjectsByParent()
2004-04-01 13:50:11,550 DEBUG: SELECT * FROM MER_B.file_view WHERE (parent_pk =
16127) AND (category = 'dataFile')
2004-04-01 13:50:12,108 DEBUG: Records fetched: 5, skipped: 0

Figure 11 – Sample Middleware Log Entries

 9

Connectivity (JDBC) calls to query the CIP databases. [12]
Each data object kept a reference to the returned query
results. This memory cache of data beans greatly improved
the performance of repeated query service requests for the
same data. If the data beans were already in the cache, the
service did not need to make the much more time–
consuming database queries. See Figure 9.

Web services made CIP very extensible. The “plug and
play” services were easy to add, remove, or replace in the
middleware; the application server handled these
operations “hot” –– i.e., while continuing to run.

Monitoring and logging––We built a number of sensors
into the middleware. We then developed a Middleware
Utility program to monitor the middleware’s status
constantly, and to report graphically such statistics as
memory usage and response times. Knowing the health of
server at all times enabled the system operators to correct
problems before they became serious. See Figure 10.

The middleware logged every activity, such as a user
request. For each user request, the log entry contained a
timestamp, the user’s name, the name of the called method,
details of the request, and key information about the results.
See Figure 11. We did data mining in these logs to compute
various statistics, such as how frequently users accessed
certain types of schedules, or to deduce usage patterns, such
as what methods users employed to locate data products.
This enabled us to fine–tune the middleware’s operations.

Asynchronous Messaging––CIP had two types of
asynchronous messages:

o Notification messages that informed the CIP
middleware or CIP users that new data and image files
are available.

o Broadcast messages that CIP users could send to all the
other users.

To implement asynchronous messaging, the CIP
middleware used the Java Message Service (JMS), which
was a part of the application server. [13]

JMS uses a publish–subscribe model. The middleware had
a number of topics that represented different types of
messages. A message consumer (such as a CIP client
application) subscribed to one or more topics. Then
whenever a message producer (a CIP client application or
another CIP component) published (sent) a message to that
topic, JMS delivered the message to all the message
consumers who had subscribed in that topic. CIP messaging
was asynchronous: message queuing and delivery occurred
in parallel with all other operations. As mentioned earlier,
each client application automatically polled the middleware
periodically for its messages.

Figure 12 shows how the File Monitor in the data
repository tier notified users who were interested in the
availability of new panoramic camera images. As soon as
the File Monitor detected a new panoramic camera image,
it published a message to the Pancam Topic.

Figure 12 – New File Notification and Broadcast Messages

 10

CIP applications received their messages via web services.
The middleware maintained a JMS Consumer object for
each user to receive messages. A Message Converter
reformatted each message so that the middleware can later
return it as a web services response. Whenever a user’s
client application polled the middleware for messages via a
service request, the User Proxy bean (a stateful session
EJB) checked the user’s JMS Consumer object, and it
retrieved any delivered messages to return in response.

Figure 12 also shows how the Broadcast Messages topic, to
which all CIP client applications subscribed, enabled a user
to send messages to all the other users. Whenever a user
sent a broadcast message via a service request, the
Publisher bean (a stateless session EJB) published the

message to the topic. The Message Archivist, a message–
driven EJB that also subscribed to the topic, received and
archived all broadcast messages into the Message Archive
database. Each user received broadcast messages via
polling.

If a user wanted to browse the archived messages, the client
application made a service request, and the Delegate bean
(a stateless session EJB) made the JDBC query into the
Message Archive. The middleware returned all the
archived messages in response.

The Data Repository Tier

As shown earlier in Figure 6, the data repository tier
encompassed the CIP databases and the mission data
servers.

The File Monitor constantly watched the logs generated by
the Unix utility program nfslogd, which wrote a log entry
every time it detected a file creation, read, move, or update.
[14] See Figure 13. The utility used a configuration file that
contained regular expressions representing the file paths
that were relevant to CIP. It filtered out any files whose
paths did not match any of the expressions.

Unlike the File Monitor, the File Detector used the Unix
utility program find to “walk” the directory tree of the
mission file system and find any relevant newly created or
updated files. [15] It also used a configuration file that
contained regular expressions for file paths. The File
Detector walked the directories once during each run. It
was a backup for the File Monitor whenever nfslogd was
not running.

As soon as the File Monitor or the File Detector
encountered a newly created or updated file that was
relevant, it sent a message to the appropriate JMS topic, as

Figure 13 – The Data Repository Tier

Figure 14 – Metadata Generation

 11

was shown in Figure 12. Data Loader subscribed to the
topic.

Upon receiving a message, the Data Loader generated
metadata for the file. Using regular expressions from its
configuration file, the loader derived metadata field values
from the file path itself. The loader also obtained some
information from the Unix file system, and for some types
of files, it read the file header to get more metadata field
values. See Figure 14. Example metadata fields included
the file name, the creation date and time, to which rover the
file belonged, the rover location, which rover instrument
generated the file data, during which sol, etc. The loader
inserted, deleted, or updated the metadata in the database.

Data Modeling––The early phase of high-level
architectural design includes defining how a system will
provide its services. This involves data modeling, process
modeling, interface design, and partitioning the system into
components that the developers can build efficiently. The
specifics of this partitioning are dependent on each system.

An important responsibility of the data repository tier was
to maintain the data model that it shared with the client
and middleware tiers. The CIP data model consisted of a
logical model (how applications viewed the data) and a
physical model (how the data was stored). The client
applications worked with only the logical model. The
middleware worked with both the logical and physical data
models in order to convert each client request into the
proper SQL statements and to return the results in a form
suitable for the client.

4. RELIABILITY

CIP was extremely reliable. During the first seven months
of the rovers’ nominal and extended missions, its
middleware stayed up over 99.9% of the time, and it ran
nonstop for as long as 77 days at a time. [16] Several key
factors contributed to this reliability.

We followed industry standards, and we used COTS
software. For our production middleware server, we ran the
WebLogic application server from BEA Systems on the
Solaris operating system from Sun Microsystems [17]. In
the data acquisition tier, we used the Oracle Enterprise
Server 9i.

The application server further contributed to reliability by
constantly monitoring the behavior of the EJBs, and it did
automatic retries or error recovery whenever necessary.

On our development servers, we did extensive stress testing
of the middleware before we deployed CIP and even during
the mission. CIP usage patterns had sharp spikes, as many

users became very active shortly after the rovers
downloaded new data and images. Our stress testing
showed us how the middleware would behave during such
spikes and pointed out performance bottlenecks. We were
able to adjust the system parameters accordingly to enable
the middleware to handle heavy loads better. We developed
a standalone, interactive utility to perform the stress testing
by simulating any number of users performing various
client functions, such as accessing schedules or
downloading files. See Figure 15.

An important measurement of software reliability is how
long it stays up and running. An application can
unexpectedly crash, or system administrators can bring it
down for maintenance. A common maintenance operation
for CIP was to reconfigure a service to accommodate a
change in an operational parameter, such as the time it took
for a signal to travel from Earth to Mars (one-way light
time).

Therefore, dynamic reconfiguration was a key feature that
allowed CIP to stay up and running for long periods
without scheduled server maintenance downtimes. CIP’s
middleware design and the application server allowed
individual services to be “hot redeployable”: we could add,
remove, replace, or restart a service while the rest of the
middleware (and CIP as a whole) continued to run. To
reconfigure a service, a system administrator first edited the
service’s configuration file and then redeployed the service.
When the service restarted, it read in its new configuration.
Redeploying a service typically took only a few seconds,
and often users did not notice any interruptions.

Figure 15 – The Middleware Stress Tester

 12

5. LESSONS LEARNED

We learned several important lessons during the design,
development, and deployment of CIP. [16]

By following industry standards and using proven COTS
software for the infrastructure (operating system,
application server, and database server), you can be
reasonably assured that the underlying “plumbing” will
work. Then the real challenges of enterprise development
are not in the coding, but in the integration of the various
components.

Make judicious use of vendor–supplied technical support.
Whenever there were problems that we couldn’t easily
resolve ourselves, especially during the many crunch times,
it was often useful to call for support and, in effect, add
temporary but knowledgeable members to our development
team. Nevertheless, it was important to test and evaluate
their advice and suggestions before applying them.

Shared coding practices, source control, and system
configuration management are critical for successful
development. Make sure there is strong buy–in from all the
developers from day one.

Ever-changing requirements before deployment and ever–
changing operational parameters after deployment make it
crucial to develop services that are plug–and–play,
mutually independent, and dynamically reconfigurable.

Do lots and lots of user testing. Before the actual rovers
landed on Mars, JPL ran a series of Operational Readiness
Tests where teams of mission managers, engineers, and
scientists worked together with simulated rovers. They
tested software systems such as CIP under realistic
conditions. We found and fixed many bugs during these
tests and gained invaluable user feedback.

Do lots and lots of stress testing. If you don’t know what
the limits of your system are, your users will surely find out
–– at the worst possible times.

Having a good data modeling process is essential. While
creating the data model, be sure to include all consumers
and producers, i.e., the stakeholders, to ensure reaching a
consensus and meeting all usage requirements. Application
developers often lack a deep understanding of data
modeling and view databases as a simple lookup tables,
thus missing opportunities to leverage fully the database
capabilities.

At the beginning of the development of the CIP
middleware, the data usage requirements were not yet firm,
and the middleware didn’t use the logical data model
properly. The result was that we decided to cache data

using stateful session EJBs instead of using entity EJBs.
[18]. We subsequently spent much time dealing with
threading and concurrency issues that entity beans would
have taken care of automatically.6

Real–time server monitoring and logging helped the system
operators keep track of what’s going on and head off any
potential problems. The Middleware Utility program and
the Performance Monitoring tab of WebLogic’s web
browser–based console program together gave the operators
a quick way to assure themselves that all was well.7 The
middleware logs provided ways to analyze usage patterns
and fine–tune CIP’s middleware.

If the enterprise system needs to respond to client requests
in near real time, then make sure to capture this
requirement during the early design stages, as it will
greatly influence the system architecture.

We were concerned initially that web services would cause
performance problems, since using XML documents for
service requests and responses involved much data
conversions, encryptions, and decryptions. CIP was able to
achieve a data throughput rate of 100 MB per hour between
a client application and the middleware, which was usually
sufficient.

Respect for the tier boundaries of an n–tier enterprise
system requires open lines of communication for
collaboration during development. Communication of
requirements must always be a two-way channel.

Developing enterprise software is inherently difficult. Don’t
make it any harder. Use common sense. Keep things
simple.

6. CONCLUSION

At the time this paper was written (early September 2004),
both rovers had lasted well over 200 sols, far beyond their
original nominal 90–sol missions. This was testament to
the excellent work and dedication of the mission managers,
scientists, and engineers at JPL and its university and
industry collaborators around the world. Fortunately, MER
software systems such as CIP have also performed well
throughout the original and the extended missions.

6
 Later on, we got better data usage requirements and understood the data

model better. But by then, we decided we didn’t have time to convert our code
to use entity beans. In hindsight, we should have taken the hit to our
development schedule and converted.
7
 Once CIP became operational shortly before the rovers landed on Mars, the

system operators mostly were the CIP developers in a new role. We monitored
CIP locally at JPL, and with proper VPN access, we could do it remotely from
NASA Ames and from our homes.

 13

Service–oriented architecture, or SOA, has been making
the rounds as the latest industry buzzword. Not all of its
concepts are new. What’s new is the widespread acceptance
by industry of the standards that SOA encompasses and the
availability of much SOA infrastructure software and
components.

CIP has been a highly visible SOA success story. It
validated the architectural tenets of developing a collection
of mutually independent services that respond to client
requests and of using web services for communications
between clients and the server.

However, SOA by itself does not guarantee a reliable
system. CIP was reliable because of the conscious decisions
that its designers and developers made, as described in this
paper. Reliable software is good architecture plus good
software engineering.

ACKNOWLEDGEMENTS

Funding for the development of CIP came from NASA’s
Computing, Information, and Communications Technology
(CICT) Program and the Computing, Networking, and
Information Systems (CNIS) Project.

Besides the authors of this paper, other CIP project
members included Roy Britten (QSS), Sanjay Desai
(SAIC), Matt D’Ortenzio (NASA), Glen Elliot (JPL),
Robert Filman (RIACS), Kim Hubbard (NASA), Sandra
Johan (NASA), Carson Little (Asani), Quit Nguyen
(SAIC), Tarang Patel (SAIC), John Schreiner (NASA), Jeff
Shapiro (QSS), Elias Sinderson (CSC), and Robert Wing
(JPL).

This project would not have been possible without the
support, assistance, and collaboration of JPL and the MER
team.

REFERENCES

[1] Jet Propulsion Laboratory, NASA fact sheet, “Mars
Exploration Rover”, http://www.jpl.nasa.gov/news/
fact_sheets/mars03rovers.pdf.

[2] NASA press release, March 2, 2004, “Opportunity
Rover Finds Strong Evidence Meridiani Planum Was
Wet”,
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/
20040302a.html.

[3] NASA press release, March 5, 2004, “Volcanic Rock in
Mars' Gusev Crater Hints at Past Water”,
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/
20040305a.html.

[4] NASA press release, March 23, 2004, “Standing Body
of Water Left Its Mark in Mars Rocks”,
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/
20040323a.html.

[5] NASA press release, April 1, 2004, “Spirit Finds Multi-
Layer Hints of Past Water at Mars' Gusev Site”,
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/
20040401a.html.

[6] http://www.oracle.com/index.html

[7] Douglas K. Berry, Web Services and Service–Oriented
Architectures: The Savvy Manager’s Guide, San
Francisco: Morgan–Kaufmann Publishers, 2003.

[8] http://www.w3.org/2002/ws/

[9] http://java.sun.com/j2ee/

[10] http://www.bea.com/framework.jsp?CNT=index.htm
&FP=/content/products/server

[11] http://www.verisign.com/

[12] http://java.sun.com/products/jdbc/

[13] http://java.sun.com/products/jms/

[14] http://mirrors.ccs.neu.edu/cgi-bin/unixhelp/man-
cgi?nfslogd+1

[15] http://mirrors.ccs.neu.edu/cgi-bin/unixhelp/man-
cgi?find+1

[16] Ronald Mak, “Enterprise Development for Mars and
other Alien Places”, keynote address presented at BEA
eWorld 2004 Conference, San Francisco, CA, May 26,
2004. Updated, expanded, and re–presented as a talk to
the SDForum Software Architecture and Modeling SIG,
Palo Alto, CA, August 11, 2004.

[17]
 http://wwws.sun.com/software/solaris/sparc/index.htm
l

[18] Richard Monson–Haefel, Enterprise JavaBeans, 3rd
edition, Sebastapol, CA: O’Reilly, 2001.

 14

BIOGRAPHIES

Ronald Mak worked on the CIP development team as the
architect and lead developer of its middleware. After the
rovers landed on Mars, he provided mission support both
at NASA Ames and at JPL. He is a Project Scientist in the
University Affiliated Research Center (UARC), which is a
partnership between the University of California at Santa
Cruz and the NASA Ames Research Center in Moffett
Field, CA. Prior to working at NASA, Ron had over 15
years of industry experience developing enterprise software
systems. He has taught graduate courses in computer
science, and he is the author of books on numerical
computing and on compiler writing. He has a B.S. in the
mathematical sciences and an M.S. in computer science
from Stanford University.

Joan Walton is the Group Lead of the Information Design
Group in the Computational Sciences Division at the NASA
Ames Research Center. In her decade at Ames, she led
several multi-year projects to produce distributed
information management systems, including the DARWIN
system for the Ames wind tunnels and the Mars Exploration
Rovers Collaborative Information Portal. In her role as a
Project Manager of CIP, Joan led a team of twelve
software developers. She was responsible for guiding the
technical direction of the project, tracking the schedule,
meeting milestones, and interacting with MER mission
management to develop requirements and to meet JPL
deployment criteria. She holds a Bachelor of Arts Degree
in Physics from Swarthmore College and a Masters Degree
in Medical Information Sciences from Stanford University.

Leslie Keely is a Computer Scientist at the NASA Ames
Research Center. She designed and led the development of
the CIP client applications, and she also does research in
the area of data visualization. Leslie has a B.S. in
Computer Science and a B.S. in Botany from the University
of Oklahoma.

Dennis Heher worked on CIP as the lead developer of the
data acquisition module. He is a Computer Scientist with
Science Applications International Corporation (SAIC) at
the NASA Ames Research Center. He has a B.A. in
Computer and Information Sciences from the University of
California at Santa Cruz and an M.S. in Computer
Engineering from Santa Clara University.

Louise Chan is a Computer Scientist with Science
Applications International Corporation (SAIC) at the
NASA Ames Research Center. She designed and led the
implementation of the data repository tier. She also does
research in the areas of data modeling and management
architecture. She holds a B.S. degree in Computer Science
from the University of Maryland

